976 research outputs found

    Flexible programmable networking: A reflective, component-based approach

    Get PDF
    The need for programmability and adaptability in networking systems is becoming increasingly important. More specifically, the challenge is in the ability to add services rapidly, and be able to deploy, configure and reconfigure them as easily as possible. Such demand is creating a considerable shift in the way networks are expected to operate in the future. This is the main aim of programmable networking research community, and in our project we are investigating a component-based approach to the structuring of programmable networking software. Our intention is to apply the notion of components, component frameworks and reflection ubiquitously, thus accommodating all the different elements that comprise a programmable networking system

    Meteorological Drivers of Cold Temperatures in the Western Pacific TTL

    Get PDF
    During the recent October 2016 aircraft sampling mission of the Tropical Tropopause Layer (POSIDON -- Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection), Western Pacific October TTL temperatures were anomalously cold due to a combination of La Nina conditions and a very stationary convective pattern. POSIDON also had more October Tropical Cyclones than typical, and tropical cyclones have substantial negative TTL temperatures associated with them. This paper investigates how meteorology in the troposphere drives TTL temperatures, and how these temperatures, coupled with the circulation, produce TTL clouds. We will also compare October TTL cloud distributions in different years, examining the relationship of clouds to October temperature anomalies

    Convective Influence on the Lower Stratospheric Water Vapor in the Boreal Summer Asian Monsoon Region

    Get PDF
    Processes maintaining the localized maxima in lower stratospheric watervapor over the boreal summer Asian monsoon region are investigated usingtrajectory and cloud models that resolve the detailed cloudmicrophysical processes, with observation-based convection and radiationschemes. We examine the impact of convective influence along parceltrajectories on cloud formation and dehydration by tracing thetrajectories through time-dependent fields of convective cloud topheights estimated from global rainfall and geostationary brightnesstemperatures. Parameters such as the rainfall threshold used foridentification of deep convection are derived by comparison with theCloudSat deep convective cloud top product as enhanced by colocatedCALIOP measurements. The simulated water vapor field at the 100 hPalevel and cloud occurrence frequencies in the tropical tropopause layer(TTL) are constrained by corresponding observations from MLS andCALIPSO, respectively. The observed maximum in the 100 hPa level watervapor field over the Asian monsoon region is only present in thesimulation with convective influence, indicating the importance ofconvective hydration for the summertime water vapor distribution.Convection moistens the 100 hPa level over the Asian monsoon by 1 ppmv,where 75 of this moistening is due to convection occurring locallywithin the monsoon region. Convection also increases the cloudoccurrence frequency in the TTL over the southern sector of the Asianmonsoon anticyclone by 20. Parcels are convectively hydrated in thesoutheastern sector of the anticyclone, transported westward by theanticyclonic circulation, and dehydrated in the southwestern sector. Therelative importance of extreme convective events that inject ice andwater vapor near or above the tropopause will also be examined

    Effects of hydroxyapatite and PDGF concentrations on osteoblast growth in a nanohydroxyapatite-polylactic acid composite for guided tissue regeneration

    Get PDF
    The technique of guided tissue regeneration (GTR) has evolved over recent years in an attempt to achieve periodontal tissue regeneration by the use of a barrier membrane. However, there are significant limitations in the currently available membranes and overall outcomes may be limited. A degradable composite material was investigated as a potential GTR membrane material. Polylactic acid (PLA) and nanohydroxyapatite (nHA) composite was analysed, its bioactive potential and suitability as a carrier system for growth factors were assessed. The effect of nHA concentrations and the addition of platelet derived growth factor (PDGF) on osteoblast proliferation and differentiation was investigated. The bioactivity was dependent on the nHA concentration in the films, with more apatite deposited on films containing higher nHA content. Osteoblasts proliferated well on samples containing low nHA content and differentiated on films with higher nHA content. The composite films were able to deliver PDGF and cell proliferation increased on samples that were pre absorbed with the growth factor. nHA–PLA composite films are able to deliver active PDGF. In addition the bioactivity and cell differentiation was higher on films containing more nHA. The use of a nHA–PLA composite material containing a high concentration of nHA may be a useful material for GTR membrane as it will not only act as a barrier, but may also be able to enhance bone regeneration by delivery of biologically active molecules

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    Get PDF
    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes

    A Method for Obtaining High Frequency, Global, IR-Based Convective Cloud Tops for Studies of the Tropical Tropopause Layer

    Get PDF
    Models of varying complexity that simulate water vapor and clouds in the Tropical Tropopause Layer (TTL) show that including convection directly is essential to properly simulating the water vapor and cloud distribution. In boreal winter, for example, simulations without convection yield a water vapor distribution that is too uniform with longitude, as well as cloud incidences that are too low. Two things are important for convective simulations. First, it is important to get the convective cloud top potential temperature correctly, since unrealistically high values (reaching above the cold point tropopause too frequently) will cause excessive hydration of the stratosphere. Second, one must capture the time variation as well, since hydration by convection depends on the local relative humidity (temperature), which has substantial variation on synoptic time scales in the TTL. This paper describes a method for obtaining high frequency (3-hourly) global convective cloud top distributions which can be used in trajectory models. The method uses rainfall thresholds, standard IR (infra-red) brightness temperatures, meteorological temperature analyses, and physically realistic and documented corrections to IR brightness temperatures to derive cloud top altitudes and potential temperatures. The cloud top altitudes compare well with combined CLOUDSAT and CALIPSO data, both in time-averaged overall vertical and horizontal distributions and in individual cases (correlations of .65-.7). Results from the method are compared to convective distributions currently used by global models. In general, the method shows that models underestimate convective cloud top altitudes

    Right ventricular dysfunction in patients with Brugada-like electrocardiography: a two dimensional strain imaging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sodium channel blockers augment ST-segment elevation in the right precordial leads in patients undergoing Brugada-type electrocardiography (ECG). However, their effect on echocardiographic features is not known. We address this by assessing global and regional ventricular function using conventional Doppler and two- dimensional (2D) speckle tracking techniques.</p> <p>Methods</p> <p>Thirty-one patients with Brugada-type ECG were studied. A pure sodium channel blocker, pilsicainide, was used to provoke an ECG response. The percentage longitudinal systolic myocardial strain at the base of both the right ventricular (RV) free wall and the interventricular septum wall was measured using 2D speckle tracking. Left ventricular (LV) and RV myocardial performance (TEI) indices were also measured.</p> <p>Results</p> <p>The pilsicainide challenge provoked a positive ECG response in 13 patients (inducible group). In the inducible group, longitudinal strain was significantly reduced only at the RV (-27.3 ± 5.4% vs -22.1 ± 3.6%, <it>P </it>< 0.01), and both RV and LV TEI indices increased (RV: 0.19 ± 0.09 vs 0.27 ± 0.11, <it>P </it>< 0.05; LV: 0.30 ± 0.10 vs 0.45 ± 0.10, <it>P </it>< 0.01) after pilsicainide administration.</p> <p>Conclusions</p> <p>Temporal and spatial analysis using the TEI index and 2D strain imaging revealed the deterioration of global ventricular function associated with conduction disturbance and RV regional function in patients with Brugada-type ECG and coved type ST elevation due to administration of a sodium channel blocker.</p
    • 

    corecore